PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2018, 52(1), p. 60-63

COMMUNICATIONS

Mathematics

ON AUTOMORPHISMS AND ENDOMORPHISMS OF CC GROUPS

H. T. ASLANYAN *

Chair of Mathematical Cybernetics RAU, Armenia

We consider the automorphisms description question for the semigroups End G of a group G having only cyclic centralizers (CC) of nontrivial elements. In particular, we prove that each member of the automorphism group $\operatorname{Aut}(G)$ of a group G from this class is uniquely determined by its action on the elements from the subgroup of inner automorphisms $\operatorname{Inn}(G)$. Note that, typical examples of CC groups are absolutely free groups, free periodic groups of large enough odd periods, *n*-periodic and free products of CC groups.

MSC2010: Primary 20F28; Secondary 20E36, 20D45.

Keywords: endomorphism, inner automorphism, centralizer.

Introduction. A group *G* is said to be a CC group, if the centralizer of each non-trivial element of *G* is a cyclic group. It is well known that absolutely free groups and free periodic groups of large enough odd periods (see [1]) are CC groups. It is easy to show that the free product of an arbitrary family of CC groups also is a CC group. It follows from Theorem 5 of the paper [2] (see also [3]) that the same is true for *n*-periodic products of CC groups. Another wide class of CC groups will be considered bellow. In [4] there were constructed first examples of infinite independent systems of group identities to solve the finite basis problem posed by B. Neumann in 1937 well-known in group theory. In the monograph [1] it is proved that for any odd $n \ge 1003$ the following family of two-variable identities

$$\{[x^{pn}, y^{pn}]^n = 1\},\tag{1}$$

where the parameter p ranges over all primes, is irreducible, that is none of the identities of this family follows from the others. Therefore, if for a given set of primes \mathcal{P} and for a fixed positive integer m > 1 we denote by $\Gamma_m(\mathcal{P})$ a relatively

^{*} E-mail: haikaslanyan@gmail.com

free group of rank *m* of a variety $\mathbb{A}_{\mathcal{P}}$ defined by all identities of the form (1) for $p \in \mathcal{P}$, then there exist a continuum of varieties and a continuum of non-isomorphic relatively free groups $\Gamma_m(\mathcal{P})$ corresponding to the different sets of primes \mathcal{P} . It was proved in [5], that for any rank *m* and for any set of primes \mathcal{P} the centralizer of any non-identity element of the relatively free group $\Gamma_m(\mathcal{P})$ is a cyclic group, that is each of the groups $\Gamma_m(\mathcal{P})$ is a CC group.

In this paper we consider the question on the description of the automorphisms of End(G) for a CC group G. The automorphism description question the for End(A)of a free algebra A in a certain variety was considered by different authors since 2002. The same problem for End(F), where F is a finitely generated free group, for a free Burnside group of odd period $n \ge 1003$ or a free monoid were solved in [6–8]. A generalization of results from [6, 7] was obtained in [9]. Note that, for instance, finitely generated free periodic groups of period 3 are not CC groups (this case was described in [10].

To formulate the results recall same notations. The group of all inner automorphism of a group *G* is denoted by Inn(G). We denote by i_a the inner automorphism of *G* defined by an element $a \in F$. By definition we have $i_a(x) = axa^{-1}$ for any $x \in G$. Here we investigated a more general situation that was considered in [9]. Our main result is the following theorem.

Theorem. Let Φ be an arbitrary automorphism of the endomorphism semigroup End(G) of a non-cyclic CC group *G*. If $\Phi(i_a) = i_a$ for any $i_a \in \text{Inn}(G)$, then $\Phi(\delta) = \delta$ for any endomorphism $\delta \in \text{End}(G)$ whose image Im δ is not cyclic.

C or ollary. For any $\Phi \in \text{Aut}(\text{Aut}(G))$ of a non-cyclic CC group G such that $\Phi(i_a) = i_a$ for any $i_a \in \text{Inn}(G)$ the equality $\Phi(\delta) = \delta$ holds for all $\delta \in \text{Aut}(G)$.

The Proof of Theorem. We will derive the proof from several lemmas, which will be proved below.

Lemma 1. If *G* is a CC group, then:

a) any non-trivial element x of G belongs to the unique maximal cyclic subgroup, which is the centralizer of x;

b) if non trivial elements a^m and b^n of G commute, then a and b belong to the same cyclic subgroup.

Proof.

a) Any maximal cyclic subgroup *A* of *G* is a subset of the centralizer C(x) of each non-trivial element $x \in A$. Hence A = C(x), because C(x) also is cyclic. Further, any two different maximal cyclic subgroups *A* and *B* of *G* generate a non-cyclic subgroup $gp\{A, B\}$ in the centralizer of each element $y \in A \cap B$, so this relation implies the equality y = 1, because the centralizer of each non-trivial element is cyclic.

b) Let the cyclic group $gp\{x\}$ be the centralizer of a^m . Then $b^n, a^m \in gp\{x\}$. Since $b^n \in gp\{b\}, a^m \in gp\{a\}$ and $gp\{x\}$ is a maximal cyclic subgroup by virtue of a), we get $gp\{b\} \subset gp\{x\}$ and $gp\{a\} \subset gp\{x\}$, since any non-trivial element belongs to the unique maximal cyclic subgroup. In particular, a and b belong to the cyclic group $gp\{x\}$. *Lemma* 2. For any $a, x \in G$ and $\delta \in \text{End}(G)$ the element $\delta(a)^{-1} \cdot \Phi(\delta)(a)$ belongs to the centralizer of the element $\Phi(\delta)(x)$ and vice versa.

Proof. Consider an arbitrary endomorphism $\delta \in \text{End}(G)$, and apply the product $\delta \circ i_a$ of automorphisms to an element $x \in G$. By definition we have

$$(\boldsymbol{\delta} \circ i_a)(x) = \boldsymbol{\delta}(i_a(x)) = \boldsymbol{\delta}(a)\boldsymbol{\delta}(x)\boldsymbol{\delta}(a^{-1}) = (i_{\boldsymbol{\delta}(a)} \circ \boldsymbol{\delta})(x)$$

Hence, the following equality holds:

$$\delta \circ i_a = i_{\delta(a)} \circ \delta. \tag{2}$$

By condition of Theorem , the restriction of an automorphism Φ from End(*G*) to the subgroup Inn(*G*) is the identity automorphism, that is,

$$\Phi\big|_{\operatorname{Inn}(G)} = 1_{\operatorname{Inn}(G)}.\tag{3}$$

We will show that equality

$$\delta(a)^{-1} \cdot \Phi(\delta)(a) = 1$$

for any $a \in F$ and $\delta \in \text{End}(G)$, which means that

$$\Phi(\delta) = \delta$$

for any $\delta \in \text{End}(G)$.

Applying the automorphism Φ to both sides of Eq. (2) and taking into account (3), we obtain the equality

$$\Phi(\delta) \circ i_a = i_{\delta(a)} \circ \Phi(\delta). \tag{4}$$

Now applying both sides of Eq. (4) to an arbitrary element $x \in G$, we get

$$\Phi(\delta)(a) \cdot \Phi(\delta)(x) \cdot \Phi(\delta)(a)^{-1} = \delta(a) \cdot \Phi(\delta)(x) \cdot \delta(a)^{-1}.$$
(5)

Eq. (5) implies that the element $\delta(a)^{-1} \cdot \Phi(\delta)(a)$ belongs to the centralizer of the element $\Phi(\delta)(x)$ for every $a, x \in G$ and vice versa.

Lemma 3. If the image of $\Phi(\delta)$ is not a cyclic group for some endomorphism $\delta \in \text{End}(F)$, then

$$\Phi(\delta) = \delta. \tag{6}$$

Proof. Suppose $\Phi(\delta)(x)$ and $\Phi(\delta)(y)$ do not belong to a same cyclic subgroup for some elements $x, y \in G$. Then they belong to different maximal cyclic subgroups, say *A* and *B* respectively. By Lemma 2, we have $\delta(a)^{-1} \cdot \Phi(\delta)(a) \in A \cap B$ for any element $a \in F$. On the other hand, $A \cap B = \{1\}$ by Lemma 1 (because $A \neq B$). Therefore,

$$\delta(a)^{-1} \cdot \Phi(\delta)(a) = 1$$

for any $a \in G$.

By virtue of Lemma 3, the proof of Theorem is complete.

The Proof of Corollary. It is obvious that Lemmas 2 and 3 remain true, if in their formulations one changes End(G) to Aut(G). If δ is an automorphism, then $\Phi(\delta)$ also is an automorphism. Therefore, $\text{Im}(\Phi(\delta)) = G$. Consequently, $\text{Im}(\Phi(\delta))$ is not cyclic, because G is not a cyclic group. Using Lemma 3, we obtain $\Phi(\delta) = \delta$.

Received 05.02.2018

REFERENCES

- 1. Adian S.I. The Burnside Problem and Identities in Groups. // Ergebnisse der Mathematik und Ihrer Grenzgebiete, 1979, v. 95.
- Adian S.I. Periodic Products of Groups. // Proc. Steklov Inst. Math., 1979, v. 142, p. 1–19.
- 3. Adian S.I., Atabekyan V.S. Periodic Product of Groups. // Journal of Contemporary Mathematical Analysis, 2017, v. 52, № 3, p. 111–117.
- Adian S.I. Infinite Irreducible Systems of Group Identities. // Math. USSR-Izv., 1970, v. 4, № 4, p. 721–739.
- 5. Adian S.I., Atabekyan V.S. On Free Groups of Infinitely Based Varieties of S.I.Adian. // Izv. Mathematics, 2017, v. 81, № 5, p. 889–900.
- Formanek E. A Question of B. Plotkin About the Semigroup of Endomorphisms of a Free Group. // Proc. Amer. Math. Soc., 2002, v. 130, p. 935–937.
- 7. Atabekyan V.S. The Automorphisms of Endomorphism Semigroups of Free Burnside Groups. // Int. J. Algebra Comput., 2015, v. 25, p. 669–674.
- 8. Mashevitzky G., Schein B. Automorphisms of the Endomorphism Semigroup of a Free Monoid or a Free Semigroup. // Proc. Amer. Math. Soc., 2003, v. 131 (6), p. 1655–1660.
- Atabekyan V.S., Aslanyan H.T. The Automorphisms of Endomorphism Semigroups of Relatively Free Groups. // International Journal of Algebra and Computation, 2018. doi.org/10.11.42/S0218196718500108
- 10. Atabekyan V.S., Aslanyan H.T., Grigorian H.A., Grigoryan A.E. Analogues of Nielsen's and Magnus's Theorems for Free Burnside Groups of Period 3. // Proceedings of the YSU. Physical and Mathematical Scienes, 2017, v. 51, № 3, p. 217–223.